Tuesday, 11 September 2012

RAW photos...JPEG photos

RAW...I inadvertently shifted my camera setting from JPEG to RAW and wasn't aware until I went to try and work with my weekend at the Dragon Boat races.....well...shit. First, I had to figure out how to convert the RAW to JPEG. It would be easy if I was using Photoshop or another bought/paid for photo working program. I do use an editing program tho, free from Fast Stone and damned if there isn't a converter in there. sweeeeeet !!


 On the off chance that there is someone else out there that doesn't have a clue what RAW is all about....from what I have been able to distill from all the verbiage....don't. Use JPEG. It's not an advantage, from what I have read. That then leaves it to the photo geeks...who will insist that one 'must' shoot in the RAW format. That's sorta like saying you have to use Apple computers. No, you don't.

Karen, rollinginarv-wheelchairtraveling.blogspot   dropped in to comment and hey Karen...check out what Fast Stone can do..and lots more neat stuff, for free.


Maybe not your cup of bourbon, but hey
it's artistic as all get out, eh.

I have to say tho.....if one is really really into taking tripod, lots of concentration type photograhpy, then perhaps RAW is for you. But..it is no small undertaking.

Anyway...I have posted here two articles on the RAW format.

Raw image format

From Wikipedia, the free encyclopedia
Jump to: navigation, search

Type of format Image file formats
A camera raw image file contains minimally processed data from the image sensor of either a digital camera, image scanner, or motion picture film scanner. Raw files are so named because they are not yet processed and therefore are not ready to be printed or edited with a bitmap graphics editor. Normally, the image is processed by a raw converter in a wide-gamut internal colorspace where precise adjustments can be made before conversion to a "positive" file format such as TIFF or JPEG for storage, printing, or further manipulation, which often encodes the image in a device-dependent colorspace. There are dozens if not hundreds of raw formats in use by different models of digital equipment (like cameras or film scanners).[1]
Raw image files are sometimes called digital negatives, as they fulfill the same role as negatives in film photography: that is, the negative is not directly usable as an image, but has all of the information needed to create an image. Likewise, the process of converting a raw image file into a viewable format is sometimes called developing a raw image, by analogy with the film development process used to convert photographic film into viewable prints. The selection of the final choice of image rendering is part of the process of white balancing and color grading.
Like a photographic negative, a raw digital image may have a wider dynamic range or color gamut than the eventual final image format, and it preserves most of the information of the captured image. The purpose of raw image formats is to save, with minimum loss of information, data obtained from the sensor, and the conditions surrounding the capturing of the image (the metadata).



Raw image formats are intended to capture as closely as possible (i.e. at the best of the specific sensor's performance) the radiometric characteristics of the scene, that is, physical information about the light intensity and color of the scene.
Most raw image file formats store information sensed according to the geometry of the sensor's individual photo-receptive elements (sometimes called pixels) rather than points in the expected final image: sensors with hexagonal element displacement, for example, record information for each of their hexagonally-displaced cells, which a decoding software will eventually transform into the rectangular geometry during "digital developing".

File contents

Raw files contain, by necessity, the information required to produce a viewable image from the camera's sensor data. The structure of raw files, including the ISO standard raw image format ISO 12234-2, TIFF/EP, often follows a common pattern, that is:
  • A short file header which typically contains an indicator of the byte-ordering of the file, a file identifier and an offset into the main file data
  • Camera sensor metadata which is required to interpret the sensor image data, including the size of the sensor, the attributes of the CFA and its color profile
  • Image metadata which is required for inclusion in any CMS environment or database. These include the exposure settings, camera/scanner/lens model, date (and, optionally, place) of shoot/scan, authoring information and other. Some raw files contain a standardized metadata section with data in Exif format.
  • An image thumbnail
  • Optionally a reduced-size image in JPEG format, which can be used for a quick preview
  • In the case of motion picture film scans, either the timecode, keycode or frame number in the file sequence which represents the frame sequence in a scanned reel. This item allows the file to be ordered in a frame sequence (without relying on its filename).
  • The sensor image data
Many raw file formats, including 3FR (Hasselblad), DCR, K25, KDC (Kodak), IIQ (Phase One), CR2 (Canon), ERF (Epson), MEF (Mamiya), MOS (Leaf), NEF (Nikon), ORF (Olympus), PEF (Pentax), RW2 (Panasonic) and ARW, SRF, SR2 (Sony), are based on the TIFF file format.[2] These files may deviate from the TIFF standard in a number of ways, including the use of a non-standard file header, the inclusion of additional image tags and the encryption of some of the tagged data.
Panasonic's raw converter corrects geometric distortion and chromatic aberration on such cameras as the LX3,[3][4][5] with necessary correction information presumably included in the raw.[citation needed] Phase One's raw converter Capture One also offers corrections for geometrical distortion, chromatic aberration, purple fringing and keystone correction emulating tilt-shift in software, on most raw files from over 100 different cameras.[6][7] The same holds for Canon's DPP application, at least for all more expensive cameras like all SLRs and the G<n> series of compact cameras.
DNG, the Adobe digital negative format, is an extension of the TIFF 6.0 format and is compatible with TIFF/EP, and uses various open formats and/or standards, including Exif metadata, XMP metadata, IPTC metadata, CIE XYZ coordinates, ICC profiles, and JPEG.[8]

Sensor image data

In digital photography, the raw file plays the role that photographic film plays in film photography. Raw files thus contain the full resolution (typically 12- or 14-bit) data as read out from each of the camera's image sensor pixels.
The camera's sensor is almost invariably overlaid with a color filter array, usually a Bayer filter, consisting of a mosaic of a 2x2 matrix of red, green, blue and (second) green filters.
One variation on the Bayer filter is the RGBE filter of the Sony Cyber-shot DSC-F828, which exchanged the green in the RG rows with "emerald"[9] (a blue-green[10] or cyan[11] color). Other sensors, such as the Foveon X3 sensor, capture information directly in RGB form (using three pixel sensors in each location). These RGB raw data still need to be processed to make an image file, because the raw RGB values correspond to the responses of the sensors, not to a standard color space like sRGB. These data do not need to be demosaiced, however.
Flatbed and film scanner sensors are typically straight narrow RGB or RGBI (where "I" is intensity) strips that are swept across an image. The HDRi raw data format is able to store the infrared raw data, which can be used for infrared cleaning, as an additional 16-bit channel. The remainder of the discussion about raw files applies to them as well. (Some scanners do not allow the host system access to the raw data at all, as a speed compromise. The raw data are processed very rapidly inside the scanner to select out the best part of the available dynamic range so only the result is passed to the computer for permanent storage, reducing the amount of data transferred and therefore the bandwidth requirement for any given speed of image throughput.)
To obtain an image from a raw file, this mosaic of data must be converted into standard RGB form. This is often referred to as "raw development".
When converting from the four-sensor 2x2 Bayer-matrix raw form into RGB pixels, the green pair is used to control the luminance detail of the processed output pixel, while the red and blue, which each have half as many samples, are used mostly for the more slowly-varying chroma component of the image.
If raw format data is available, it can be used in high-dynamic-range imaging conversion, as a simpler alternative to the multi-exposure HDI approach of capturing three separate images, one underexposed, one correct and one overexposed, and "overlaying" one on top of the other.


Nearly all digital cameras can process the image from the sensor into a JPEG file using settings for white balance, colour saturation, contrast, and sharpness that are either selected automatically or entered by the photographer before taking the picture. Cameras that produce raw files save these settings in the file, but defer the processing. This results in an extra step for the photographer, so raw is normally only used when additional computer processing is intended. However, raw has numerous advantages over JPEG such as:
  • Higher image quality. Because all the calculations (such as applying gamma correction, demosaicing, white balance, brightness, contrast, etc...) used to generate pixel values (in RGB format for most images) are performed in one step on the base data, the resultant pixel values will be more accurate and exhibit less posterization.
  • Bypassing of undesired steps in the camera's processing, including sharpening and noise reduction
  • JPEG images are typically saved using a lossy compression format (though a lossless JPEG compression is now available). Raw formats typically use lossless compression or high quality lossy compression.
  • Finer control. Raw conversion software allows users to manipulate more parameters (such as lightness, white balance, hue, saturation, etc...) and do so with greater variability. For example, the white point can be set to any value, not just discrete preset values like "daylight" or "incandescent". As well, the user can typically see a preview while adjusting these parameters.
  • Camera raw files have 12 or 14 bits of intensity information, not the gamma-compressed 8 bits stored in JPEG files (and typically stored in processed TIFF files); since the data is not yet rendered and clipped to a colour space gamut, more precision may be available in highlights, shadows, and saturated colours.
  • The colour space can be set to whatever is desired.
  • Different demosaicing algorithms can be used, not just the one coded into the camera.
  • The contents of raw files include more information, and potentially higher quality, than the converted results, in which the rendering parameters are fixed, the colour gamut is clipped, and there may be quantization and compression artifacts.
  • Large transformations of the data, such as increasing the exposure of a dramatically under-exposed photo, result in fewer visible artifacts when done from raw data than when done from already rendered image files. Raw data leave more scope for both corrections and artistic manipulations, without resulting in images with visible flaws such as posterization.
  • All the changes made on a raw image file are non-destructive; that is, only the metadata that controls the rendering is changed to make different output versions, leaving the original data unchanged.
  • To some extent, raw-format photography eliminates the need to use the HDRI technique, allowing a much better control over the mapping of the scene intensity range into the output tonal range, compared to the process of automatically mapping to JPEG or other 8-bit representation.


  • Camera raw file size are typically 2–6 times larger than JPEG file size.[12] While use of raw formats avoids the compression artifacts inherent in JPEG, fewer images can fit on a given memory card. However, the large sizes and low prices of modern memory cards mitigate this.
  • Most raw formats implement lossless data compression to reduce the size of the files without affecting image quality. But some others use lossy data compression where quantization and filtering is performed on the image data.[13][14] Several recent Nikon cameras let photographers choose between no compression, lossless compression or lossy compression for their raw images.
  • The standard raw image format (ISO 12234-2, TIFF/EP) is not widely accepted. DNG, the potential candidate for a new standard format, has not been adopted by many major camera companies. (See "Standardization" section). Numerous different raw formats are currently in use and new raw formats keep appearing, while others are abandoned.[15]
  • Because of the lack of widespread adoption of a standard raw format, more specialized software may be required to open raw files than for standardized formats like JPEG or TIFF. Software developers have to frequently update their products to support the raw formats of the latest cameras but open source implementations like dcraw make it easier.
  • The time taken in the image workflow is an important factor when choosing between raw and ready-to-use image formats. With modern photo editing software the additional time needed to process raw images has been greatly reduced but it still requires an extra step in workflow.

Software support

Cameras that support raw files typically come with proprietary software for conversion of their raw image data into standard RGB images. Other processing and conversion programs and plugins are available from vendors that have either licensed the technology from the camera manufacturer or reverse-engineered the particular raw format and provided their own processing algorithms.

Free and open source software

darktable is a raw-workflow tool for Linux and other open Unix-like operating systems. Features native 32-bit floating point processing and a plugin architecture.
dcraw is a program which reads most raw formats and can be made to run on operating systems not supported by most commercial software (such as Unix). Libraw[16] is an API library based on dcraw, offering a more convenient interface for reading and converting raw files. HDR PhotoStudio and AZImage[17] are some of the commercial applications that use Libraw. Jrawio is another API library, written in pure Java code and compliant to the standard Java Image I/O API.
digiKam is an advanced digital photo management application for Linux, Windows, and Mac-OSX that supports raw processing.
ExifTool supports the reading, writing and editing of metadata in raw image files. ExifTool supports many different types of metadata including Exif, GPS, IPTC, XMP, JFIF, GeoTIFF, ICC Profile, Photoshop IRB, FlashPix, AFCP and ID3, as well as the maker notes of many digital cameras.
ImageMagick, a popular software suite for image manipulation and conversion, reads many different raw file formats.[18] ImageMagick is available for Linux/Unix, Mac OS, Windows, and other platforms.
Photivo is a raw processor with a 16-bit processing pipeline. It runs on Linux, Mac OSX and Windows and integrates tightly with GIMP.
Rawstudio is a raw developer.
RawTherapee is a raw developer supporting Linux, OS X and Windows operating systems. It features a native 32-bit floating point pipeline.
UFRaw is a frontend which uses dcraw as a backend. It can be used as a GIMP plugin and is available for most operating systems.

Proprietary software

ACDSee Pro is an extensive photo management and editing software that constantly adds to its list of supported raw formats.[19]
Adobe Photoshop contains extensive support of raw formats since version CS2, as does Adobe Photoshop Lightroom.
Capture One supports a vast range of raw image files from both DSLRs (Canon, Nikon, Panasonic, Sony etc.) and medium-format cameras (Phase One, Leaf, Mamiya etc.).[20]
LightZone from Light Craft is a photo editing program provided the ability to edit many raw formats natively. Most tools are raw converters, but LightZone allowed a user to edit a raw file as if it were TIFF or JPEG. The project was discontinued in September 2011.[21]
Paint Shop Pro likewise contains raw support, although as in the case of most editors updates to the program may be necessary to attain compatibility with newer raw formats as they are released.
Picasa is a free basic editor and organizer that supports most raw files. IrfanView similarly is a freeware/shareware basic editor with support for most raw files.
Microsoft supplies free software for Windows XP to integrate viewing and printing into the system's other photo tools; however, this software was last updated in 2005 and does not support many raw files from cameras released subsequently.[22] The Windows Camera Codec pack allows native viewing of raw-format files from 120 digital SLR cameras from multiple manufacturers in Windows Explorer and Windows Live Photo Gallery, in Windows Vista and Windows 7.[23]
Microsoft's Digital Image 2006 recognizes and organizes raw image formats such as .crw, .cr2, and .nef, which are file formats produced by Canon and Nikon,[citation needed] but that product was discontinued in 2007.[24]
Windows XP and Vista both support the WIC codec standard. Products such as Konvertor, Windows Photo Gallery, Windows Live Photo Gallery and FastPictureViewer Professional[25] can view raw formats for which the necessary WIC codecs are installed. Camera manufacturers Canon, Nikon, Sony, Olympus and Pentax have released WIC codecs, although some manufactures are only providing codec support for the 32-bit versions of Vista.[26] A commercial DNG codec is also available from Ardfry Imaging,[27] while the makers of FastPictureViewer have released a WIC codec pack, adding support for 22 raw formats to Windows in both 32-bit and 64-bit versions, as donationware.[28]
In 2005, Apple Computer introduced several products which offered raw-file support. In January, Apple released iPhoto 5, which offered basic support for viewing and editing many raw file formats. In April of that year, Apple introduced a new version of its operating system, Mac OS X v10.4, which added raw support directly to the operating system, as part of the ImageIO framework, which adds raw support automatically to the majority of Mac OS X applications both from Apple (such as Preview, Mac OS X's PDF and image viewing application and Aperture, a photo post-production software package for professionals) as well as all third party applications which make use of the ImageIO frameworks. Semi-regular updates to OS X generally include updated support for new raw formats introduced in the intervening months by camera makers.
There are many other "raw workflow applications" designed to provide efficient processing and post-processing of raw images, including Helicon Filter, DxO Labs' DxO Optics Pro, Hasselblad's Phocus and Bibble Labs' Bibble Pro. Like Apple Aperture, Adobe Photoshop and Lightroom, LaserSoft Imaging's SilverFast, and PhotoLine, these programs provide sophisticated controls for processing the information stored in the raw file and converting raw files to JPEG or TIFF. Picasa, a free image editing and cataloging program from Google, can read and display many raw formats, but like iPhoto, Picasa provides only limited tools for processing the data in a raw file.


Providing a detailed and concise description of the content of raw files is highly problematic. There is no single raw format; formats can be similar or radically different. Different manufacturers use their own proprietary and typically undocumented formats, which are collectively known as raw format. Often they also change the format from one camera model to the next. Several major camera manufacturers, including Nikon, Canon and Sony, encrypt portions of the file in an attempt to prevent third-party tools from accessing them.[29]
This industry-wide situation of inconsistent formatting has concerned many photographers who worry that their valuable raw photos may someday become inaccessible, as computer operating systems and software programs become obsolete and abandoned raw formats are dropped from new software. The availability of high-quality open source software which decodes raw image formats, particularly dcraw, has helped to alleviate these concerns. An essay by Michael Reichmann and Juergen Specht stated "here are two solutions – the adoption by the camera industry of A: Public documentation of RAW formats; past, present and future, or, more likely B: Adoption of a universal RAW format".[30] "Planning for [US] Library of Congress Collections" identifies raw-file formats as "less desirable file formats", and identifies DNG as a suggested alternative.[31]
DNG is the only raw image format for which industry-wide buy-in is being sought. It is based upon, and compatible with, the ISO standard raw image format ISO 12234-2, TIFF/EP, and is being used by ISO in their revision of that standard.
The ISO standard raw image format is ISO 12234-2, better known as TIFF/EP. (TIFF/EP also supports "non-raw", or "processed", images). TIFF/EP provided a basis for the raw image formats of a number of cameras. For example, Nikon's NEF raw files are based on TIFF/EP, and include a tag which identifies the version of TIFF/EP they are based on.[32] Adobe's DNG (Digital Negative) raw file format was based on TIFF/EP, and the DNG specification states "DNG ... is compatible with the TIFF-EP standard".[33] Several cameras use DNG as their raw image format, so in that limited sense they use TIFF/EP too.[34]
Adobe Systems launched this DNG raw image format in September 2004. By September 2006, several camera manufacturers had started to announce support for DNG in newer camera models, including Leica, Samsung, Ricoh, Pentax, Hasselblad (native camera support); and, Better Light (export).[35] The Leica Digital-Modul-R (DMR) was first to use DNG as its native format.[36] In September 2009 Adobe stated that there were no known intellectual property encumbrances or license requirements for DNG.[37] (There is a "Digital Negative (DNG) Specification Patent License",[38] but it does not actually state that there are any patents held on DNG, and the September 2009 statement was made at least 4 years after this license was published).
TIFF/EP began its 5-year revision cycle in 2006.[39] Adobe offered the DNG specification to ISO to be part of ISO's revised TIFF/EP standard.[40][41] A progress report in October 2008 from ISO about the revision of TIFF/EP stated that the revision "... currently includes two "interoperability-profiles," "IP 1" for processed image data, using ".TIF" extension, and "IP 2" for "raw" image data, ".DNG" extension".[42] It is "IP 2" that is relevant here. A progress report in September 2009 states that "This format will be similar to DNG 1.3, which serves as the starting point for development."[43]
DNG has been exploited by open-source developers.[29] Use by camera makers varies: the largest companies such as Canon, Nikon, Sony, and some others, don't use DNG; but smaller companies, and makers of "niche" cameras who might otherwise have difficulty getting support from software companies, frequently use DNG as their native raw image format. (Or in the case of Pentax, as an optional alternative to their own raw image format). There are of the order of 15 or more such companies, even including a few that specialize in movie cameras.[34]


To be viewed or printed, the output from a camera's image sensor has to be processed, that is, converted to a photographic rendering of the scene, and then stored in a standard raster graphics format such as JPEG. This processing, whether done in-camera or later in a raw-file converter, involves a number of operations, typically including:[44][45]
  • decoding – image data of raw files are typically encoded for compression purpose, but also often for obfuscation purpose (e.g. raw files from Canon or Nikon cameras)[citation needed].
  • defective pixel removal – replacing data in known bad locations with interpolations from nearby locations
  • white balancing – accounting for color temperature of the light that was used to take the photograph
  • demosaicing – interpolating the partial raw data received from the color-filtered image sensor into a matrix of colored pixels.
  • noise reduction – trading off detail for smoothness by removing small fluctuations
  • color translation – converting from the camera native color space defined by the spectral sensitivities of the image sensor to an output color space (typically sRGB for JPEG)
  • tone reproduction[46][47] – the scene luminance captured by the camera sensors and stored in the raw file (with a dynamic range of typically 10 or more bits) needs to be rendered for pleasing effect and correct viewing on low-dynamic-range monitors or prints; the tone-reproduction rendering often includes separate tone mapping and gamma compression steps.
  • compression – for example JPEG compression
Note that demosaicing is only performed for CFA sensors; it is not required for 3CCD or Foveon X3 sensors.
Cameras and image processing software may also perform additional processing to improve image quality, for example:
When a camera saves a raw file it defers most of this processing; typically the only processing performed is the removal of defective pixels (the DNG specification requires that defective pixels are removed before creating the file[48]). Some camera manufacturers do additional processing before saving raw files; for example, Nikon has been criticized by astrophotographers for applying noise reduction before saving the raw file.[49]
Some raw formats also allow nonlinear quantization.[13][14] This nonlinearity allows the compression of the raw data without visible degradation of the image by removing invisible and irrelevant information from the image. Although noise is discarded this has nothing to do with (visible) noise reduction.

 • IrfanView
DXO Optics Pro
Picture Window Pro
• the software that came with your camera
• more software comes out all the time…


There are a few other issues to worry about when shooting in Raw, such as color space (Adobe 1998 vs. sRGB). I’ve used both color spaces, but sRGB is closer to most ink jet, pigment, and lab printers (the place where I get my photos printed requires sRGB). If you want all 12-bits of color (as opposed to the 8-bits of a JPEG) you will need to store your image as a TIFF.
Some people will also convert their proprietary Raw files (with extensions like .CRW, .CR2, .NEF, etc..) into the Adobe digital negative format (.DNG) to make sure those files will be readable in the far flung future. I have yet to spend the time doing this because I haven’t seen the need. For archival, however, consider getting gold DVDs because the gold lining lasts 50 – 100 years (much longer than the maximum of about 25 years for silver lined DVDs or CDs). Keep more than one backup if your images are important (and keep the second backup at a different location, such as the house of a friend or relative).
When it comes to your photography, however, you are the ultimate decision maker on what is best. I recommend that, if you haven’t, you play with the Raw format. You certainly won’t harm yourself or your camera. In fact, a great test is to go out just to shoot somehting (even just in the backyard or around the block). Shoot several photographs under various lighting conditions using the Raw + JPEG setting on your DSLR (if it has that capability). Take them back to your computer and compare after processing the Raw files. Take into consideration your time in doing so and see if the gain is worth your extra time.
Thanks again to Rebecca and Richard from Finn Productions for this article on JPEG vs RAW. Head over to our Flickr Discussion group on the topic to read more on the topic or to have your say.